

Max.Marks:80

I B.TECH – EXAMINATIONS, DECEMBER - 2010 ELECTRICAL AND ELECTRONICS ENGINEERING (BIO – TECHNOLOGY)

Time: 3hours

Answer any FIVE questions All questions carry equal marks

- 1.a) Name the different types of elements that constitute an electric circuit.
 - b) A 20V source with an internal resistance of 2Ω is connected to a load resistance of 8Ω . Find the load current. Verify your result by transforming the voltage source into current source as shown in the figure.

c) In the above circuit, calculate the current through 6 Ω resistor. [4+4+8]

- 2.a) Does the induction motor have any similarities with the transformer. Compare the similarities and differences between them.
 - b) A 20h.p, 400V, 50HZ, 3-phase induction motor has an efficiency of 80% and working at 0.7 p.f. The motor is connected to 400 volts, 3-phase supply calculate the current drawn by the motor from the mains. [8+8]
- 3.a)i) Find the resistively of intrinsic silicon at 300 ⁰K. It is given the n_i at 300 ⁰K in silicon is $1.5 \times 10^{10}/\text{Cm}^3$, $\mu_p = 500 \, cm^2 / V S$, $\mu_n = 1300 \text{-Cm}^2 / \text{V} \text{S}$.
 - ii) If an acceptor impurity is added to the extent of 1 impurity atom in 2×10^8 silicon atoms, find it's resistively.
 - iii) If a donor impurity is added to the extent of 1 impurity atom in 5×10^7 silicon atoms, find it's resistively.
 - b) Prove that the concentration of free electron in an intrinsic semiconductor is given by $n = N_c e^{-(E_c - E_f)/KT}$ [12+4]
- 4. For the network shown in the figure determine the range of R_L and I_L that will result in V_{RL} being maintained at 10 V:
 - a) Determine the maximum Wattage rating of the diode

b) The reverse saturation current of the diode is 1 μ A. Its peak inverse Voltage is 500V. Find r_i , V_0 that PIV is not exceeded as shown in figure. [16]

- 5.a) Derive the expression for:
 - i) Average current
 - ii) DC output voltage
 - iii) RMS current,
 - iv) RMS voltage across the load,
 - v) Rectifier efficiency
 - vi) Regulation for full wave rectifier whose input a sine wave.
 - Prove that the regulation of both half wave and full wave rectifier is given by % b) regulation = $\frac{R_f}{K_f} \times 100$. [10+6]

$$c$$
 R_L

- 6.a) With the help of block diagrams, explain the four different feed back topologies.
 - Draw the circuit of a voltage series feedback amplifier with BJT. What is the b) effect of this feedback as R_i and R_0 ? [6+10]
- 7.a) Draw the circuit diagram of wien bridge oscillator using BJT. Show that the gain of the amplifier must be at least 3 for the oscillations to occur.
 - For the fixed-bias Ge transistor, n-p-n type, the junction voltages at saturation and b) cutoff one in active region, may be assumed to zero. This circuit operates properly over the temperature range -50 °C to 75 °C and to just start malfunctioning at these extremes. The various circuit specifications are: $V_{CC} = 4.5v$, $V_{BB} = 3$ V, $h_{FE} = 40$ at -50 °C, and $h_{fe} = 60$ at 75 °C, $I_{CBO} = 4 \mu A$ at 25 °C and doubles every 10 0 C. Collector current is 10 μ A. Design the values of R_{c1}, R₁ and R₂. [8+8]
- Explain how a shift register is used as a Ring counter. Draw the O/P waveform 8.a) from each flip-flop of a 3-stage unit.
 - Prove that if w'x + yz = 0, then wx + y'(w' + z') = wx + xz + x'z' + w'y'zb)
 - Represent the given negative numbers in sign-magnitude, 1'S and 2'S complement c) representation in 12-bit format: i) -64 ii) -512. [6+6+4]

--000—

I B.TECH – EXAMINATIONS, DECEMBER - 2010 ELECTRICAL AND ELECTRONICS ENGINEERING (BIO – TECHNOLOGY)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- 1.a)i) Find the resistively of intrinsic silicon at 300 ⁰K. It is given the n_i at 300 ⁰K in silicon is $1.5 \ge 10^{10}/\text{Cm}^3$, $\mu_n = 500 \text{ cm}^2/V S$, $\mu_n = 1300 \text{-Cm}^2/\text{V} \text{S}$.
 - ii) If an acceptor impurity is added to the extent of 1 impurity atom in 2×10^8 silicon atoms, find it's resistively.
 - iii) If a donor impurity is added to the extent of 1 impurity atom in 5×10^7 silicon atoms, find it's resistively.
 - b) Prove that the concentration of free electron in an intrinsic semiconductor is given by $n = N_c e^{-(E_c - E_f)/KT}$ [12+4]
- 2. For the network shown in the figure determine the range of R_L and I_L that will result in V_{RL} being maintained at 10 V:
 - a) Determine the maximum Wattage rating of the diode

b) The reverse saturation current of the diode is 1 μ A. Its peak inverse Voltage is 500V. Find r_i , V_0 that PIV is not exceeded as shown in figure. [16]

- 3.a) Derive the expression for:
 - i) Average current
 - ii) DC output voltage
 - iii) RMS current,
 - iv) RMS voltage across the load,
 - v) Rectifier efficiency
 - vi) Regulation for full wave rectifier whose input a sine wave.
 - b) Prove that the regulation of both half wave and full wave rectifier is given by % regulation = $\frac{R_f}{R_c} \times 100$. [10+6]

- 4.a) With the help of block diagrams, explain the four different feed back topologies.
 - b) Draw the circuit of a voltage series feedback amplifier with BJT. What is the effect of this feedback as R_i and R_0 ? [6+10]
- 5.a) Draw the circuit diagram of wien bridge oscillator using BJT. Show that the gain of the amplifier must be at least 3 for the oscillations to occur.
 - b) For the fixed-bias Ge transistor, n-p-n type, the junction voltages at saturation and cutoff one in active region, may be assumed to zero. This circuit operates properly over the temperature range -50 $^{\circ}$ C to 75 $^{\circ}$ C and to just start malfunctioning at these extremes. The various circuit specifications are: V_{CC} = 4.5v, V_{BB} = 3 V, h_{FE} = 40 at -50 $^{\circ}$ C, and h_{fe} = 60 at 75 $^{\circ}$ C, I_{CBO} = 4 μ A at 25 $^{\circ}$ C and doubles every 10 $^{\circ}$ C. Collector current is 10 μ A. Design the values of R_{c1}, R₁ and R₂. [8+8]
- 6.a) Explain how a shift register is used as a Ring counter. Draw the O/P waveform from each flip-flop of a 3-stage unit.
 - b) Prove that if w'x + yz = 0, then wx + y'(w' + z') = wx + xz + x'z' + w'y'z
 - c) Represent the given negative numbers in sign-magnitude, 1'S and 2'S complement representation in 12-bit format:
 i) -64
 - ii) -512.

[6+6+4]

- 7.a) Name the different types of elements that constitute an electric circuit.
 - b) A 20V source with an internal resistance of 2Ω is connected to a load resistance of 8Ω . Find the load current. Verify your result by transforming the voltage source into current source as shown in the figure.

- c) In the above circuit, calculate the current through 6 Ω resistor. [4+4+8]
- 8.a) Does the induction motor have any similarities with the transformer. Compare the similarities and differences between them.
 - b) A 20h.p, 400V, 50HZ, 3-phase induction motor has an efficiency of 80% and working at 0.7 p.f. The motor is connected to 400 volts, 3-phase supply calculate the current drawn by the motor from the mains. [8+8]

I B.TECH – EXAMINATIONS, DECEMBER - 2010 ELECTRICAL AND ELECTRONICS ENGINEERING (BIO – TECHNOLOGY)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Derive the expression for:

iii) RMS current,

- i) Average current ii) DC output voltage
 - iv) RMS voltage across the load,
- v) Rectifier efficiency
- vi) Regulation for full wave rectifier whose input a sine wave.
- b) Prove that the regulation of both half wave and full wave rectifier is given by % regulation = $\frac{R_f}{10+6} \times 100$. [10+6]

egulation =
$$\frac{R_f}{R_L} \times 100$$

- 2.a) With the help of block diagrams, explain the four different feed back topologies.
 - b) Draw the circuit of a voltage series feedback amplifier with BJT. What is the effect of this feedback as R_i and R_0 ? [6+10]
- 3.a) Draw the circuit diagram of wien bridge oscillator using BJT. Show that the gain of the amplifier must be at least 3 for the oscillations to occur.
 - b) For the fixed-bias Ge transistor, n-p-n type, the junction voltages at saturation and cutoff one in active region, may be assumed to zero. This circuit operates properly over the temperature range -50 0 C to 75 0 C and to just start malfunctioning at these extremes. The various circuit specifications are: V_{CC} = 4.5v, V_{BB} = 3 V, h_{FE} = 40 at -50 0 C, and h_{fe} = 60 at 75 0 C, I_{CBO} = 4 μ A at 25 0 C and doubles every 10 0 C. Collector current is 10 μ A. Design the values of R_{c1}, R₁ and R₂. [8+8]
- 4.a) Explain how a shift register is used as a Ring counter. Draw the O/P waveform from each flip-flop of a 3-stage unit.
 - b) Prove that if w'x + yz = 0, then wx + y'(w' + z') = wx + xz + x'z' + w'y'z
 - c) Represent the given negative numbers in sign-magnitude, 1'S and 2'S complement representation in 12-bit format:
 i) -64 ii) -512. [6+6+4]
- 5.a) Name the different types of elements that constitute an electric circuit.
- b) A 20V source with an internal resistance of 2Ω is connected to a load resistance of 8Ω . Find the load current. Verify your result by transforming the voltage source into current source as shown in the figure.

c) In the above circuit, calculate the current through 6 Ω resistor. [4+4+8]

- 6.a) Does the induction motor have any similarities with the transformer. Compare the similarities and differences between them.
 - b) A 20h.p, 400V, 50HZ, 3-phase induction motor has an efficiency of 80% and working at 0.7 p.f. The motor is connected to 400 volts, 3-phase supply calculate the current drawn by the motor from the mains.
- 7.a)i) Find the resistively of intrinsic silicon at 300 ⁰K. It is given the n_i at 300 ⁰K in silicon is 1.5 x 10¹⁰/Cm³, $\mu_p = 500 \, cm^2 / V S$, $\mu_n = 1300 Cm^2 / V S$.
 - ii) If an acceptor impurity is added to the extent of 1 impurity atom in 2×10^8 silicon atoms, find it's resistively.
 - iii) If a donor impurity is added to the extent of 1 impurity atom in 5×10^7 silicon atoms, find it's resistively.
 - b) Prove that the concentration of free electron in an intrinsic semiconductor is given by $n = N_c e^{-(E_c - E_f)/KT}$ [12+4]
- 8. For the network shown in the figure determine the range of R_L and I_L that will result in V_{RL} being maintained at 10 V:
 - a) Determine the maximum Wattage rating of the diode

b) The reverse saturation current of the diode is 1 μ A. Its peak inverse Voltage is 500V. Find r_i, V₀ that PIV is not exceeded as shown in figure. [16]

--000—

Max.Marks:80

I B.TECH – EXAMINATIONS, DECEMBER - 2010 ELECTRICAL AND ELECTRONICS ENGINEERING (BIO – TECHNOLOGY)

Time: 3hours

Answer any FIVE questions All questions carry equal marks

- 1.a) Draw the circuit diagram of wien bridge oscillator using BJT. Show that the gain of the amplifier must be at least 3 for the oscillations to occur.
 - b) For the fixed-bias Ge transistor, n-p-n type, the junction voltages at saturation and cutoff one in active region, may be assumed to zero. This circuit operates properly over the temperature range -50 $^{\circ}$ C to 75 $^{\circ}$ C and to just start malfunctioning at these extremes. The various circuit specifications are: V_{CC} = 4.5v, V_{BB} = 3 V, h_{FE} = 40 at -50 $^{\circ}$ C, and h_{fe} = 60 at 75 $^{\circ}$ C, I_{CBO} = 4 μ A at 25 $^{\circ}$ C and doubles every 10 $^{\circ}$ C. Collector current is 10 μ A. Design the values of R_{c1}, R₁ and R₂. [8+8]
- 2.a) Explain how a shift register is used as a Ring counter. Draw the O/P waveform from each flip-flop of a 3-stage unit.
- b) Prove that if w'x + yz = 0, then wx + y'(w' + z') = wx + xz + x'z' + w'y'z
- c) Represent the given negative numbers in sign-magnitude, 1'S and 2'S complement representation in 12-bit format:
 i) -64
 ii) -512. [6+6+4]
- 3.a) Name the different types of elements that constitute an electric circuit.
 - b) A 20V source with an internal resistance of 2Ω is connected to a load resistance of 8Ω . Find the load current. Verify your result by transforming the voltage source into current source as shown in the figure.

- c) In the above circuit, calculate the current through 6 Ω resistor. [4+4+8]
- 4.a) Does the induction motor have any similarities with the transformer. Compare the similarities and differences between them.
 - b) A 20h.p, 400V, 50HZ, 3-phase induction motor has an efficiency of 80% and working at 0.7 p.f. The motor is connected to 400 volts, 3-phase supply calculate the current drawn by the motor from the mains. [8+8]
- 5.a)i) Find the resistively of intrinsic silicon at 300 ⁰K. It is given the n_i at 300 ⁰K in silicon is $1.5 \ge 10^{10}/\text{Cm}^3$, $\mu_p = 500 \text{ cm}^2/V S$, $\mu_n = 1300 \text{-Cm}^2/\text{V} \text{S}$.
 - ii) If an acceptor impurity is added to the extent of 1 impurity atom in 2×10^8 silicon atoms, find it's resistively.

www.firstranker.com

Code.No: RR12302

- iii) If a donor impurity is added to the extent of 1 impurity atom in 5×10^7 silicon atoms, find it's resistively.
- b) Prove that the concentration of free electron in an intrinsic semiconductor is given by $n = N_c e^{-(E_c - E_f)/KT}$ [12+4]
- 6. For the network shown in the figure determine the range of R_L and I_L that will result in V_{RL} being maintained at 10 V:
 - a) Determine the maximum Wattage rating of the diode

b) The reverse saturation current of the diode is 1 μ A. Its peak inverse Voltage is 500V. Find r_i, V₀ that PIV is not exceeded as shown in figure. [16]

- 7.a) Derive the expression for:
 - i) Average current
 - ii) DC output voltage
 - iii) RMS current,
 - iv) RMS voltage across the load,
 - v) Rectifier efficiency
 - vi) Regulation for full wave rectifier whose input a sine wave.
 - b) Prove that the regulation of both half wave and full wave rectifier is given by % regulation = $\frac{R_f}{K_f} \times 100$. [10+6]

gulation =
$$\frac{R_f}{R_L} \times 100$$
. [10+6]

- 8.a) With the help of block diagrams, explain the four different feed back topologies.
 - b) Draw the circuit of a voltage series feedback amplifier with BJT. What is the effect of this feedback as R_i and R_0 ? [6+10]